Arrhythmogenic effects of mutated L-type Ca2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans

نویسندگان

  • Christina Schüler
  • Elisabeth Fischer
  • Lior Shaltiel
  • Wagner Steuer Costa
  • Alexander Gottschalk
چکیده

Cardiac arrhythmias are often associated with mutations in ion channels or other proteins. To enable drug development for distinct arrhythmias, model systems are required that allow implementing patient-specific mutations. We assessed a muscular pump in Caenorhabditis elegans. The pharynx utilizes homologues of most of the ion channels, pumps and transporters defining human cardiac physiology. To yield precise rhythmicity, we optically paced the pharynx using channelrhodopsin-2. We assessed pharynx pumping by extracellular recordings (electropharyngeograms--EPGs), and by a novel video-microscopy based method we developed, which allows analyzing multiple animals simultaneously. Mutations in the L-type VGCC (voltage-gated Ca(2+)-channel) EGL-19 caused prolonged pump duration, as found for analogous mutations in the Cav1.2 channel, associated with long QT syndrome. egl-19 mutations affected ability to pump at high frequency and induced arrhythmicity. The pharyngeal neurons did not influence these effects. We tested whether drugs could ameliorate arrhythmia in the optogenetically paced pharynx. The dihydropyridine analog Nemadipine A prolonged pump duration in wild type, and reduced or prolonged pump duration of distinct egl-19 alleles, thus indicating allele-specific effects. In sum, our model may allow screening of drug candidates affecting specific VGCCs mutations, and permit to better understand the effects of distinct mutations on a macroscopic level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans

Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...

متن کامل

Interaction between cannabinoid receptors and inhibition of L-type calcium channel on passive avoidance learning and memory in male rats

Introduction: There is currently a debate over the interaction between Ca2+ channels and cannabinoid system on learning and memory processing. In this study, we examined the effect of acute injection of cannabinoid agonist (Win- 55212-2) (Win) or antagonist (AM251), following chronic injection of verapamil, as a L-type Ca2+ channels blocker, on passive avoidance (PA) test in male Wistar rats...

متن کامل

The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans

Caenorhabditis elegans is a powerful model system widely used to investigate the relationships between genes and complex behaviors like locomotion. However, physiological studies at the cellular level have been restricted by the difficulty to dissect this microscopic animal. Thus, little is known about the properties of body wall muscle cells used for locomotion. Using in situ patch clamp techn...

متن کامل

Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses

For studying the function of specific neurons in their native circuitry, it is desired to precisely control their activity. This often requires dissection to allow accurate electrical stimulation or neurotransmitter application , and it is thus inherently difficult in live animals, especially in small model organisms. Here, we employed channelrhodopsin-2 (ChR2), a directly light-gated cation ch...

متن کامل

The Dystrophin Complex Controls BK Channel Localization and Muscle Activity in Caenorhabditis elegans

Genetic defects in the dystrophin-associated protein complex (DAPC) are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015